Maths Calculation Policy

Addition-

Key language which should be used: sum, total, parts and wholes, plus, add, altogether, more than, 'is equal to' 'is the same as'

Concrete	Pictorial	Abstract
Combining two parts to make a whole (use other resources too e.g. eggs, shells, teddy bears etc)		$4+3=7$ (four is a part, 3 is a part and the whole is seven)
Counting on using number lines by using cubes or numicon	A bar model which encourages the children to count on ?	The abstract number line: What is 2 more than 4? What is the sum of 4 and 4 ? What's the total of 4 and 2? $4+2$
Regrouping to make 10 by using ten frames and counters/cubes or using numicon: $6+5$	Children to draw the ten frame and counters/cubes	Children to develop an understanding of equality e.g $6+\square=11$ and $6+5=5+\square \quad 6+5=\square+4$

Fluency variation, different ways to ask children to solve 21+34:

Sam saved $£ 21$ one week and $£ 34$ another. How much did he save in total?	21
$21+34=55$. Prove it! (reasoning but the children need to be fluent in representing this)	$21+34=$
	What's the sum of twenty one
	Whd thirty four?

Always use missing digit problems too:

Subtraction-

Key language which should be used: take away, less than, the difference, subtract, minus, fewer, decrease, '7 take away 3, the difference is four'

Multiplication-

Key language which should be used: double times, multiplied by, the product of, groups of, lots of, 'is equal to' 'is the same as'

Concrete	Pictorial	Abstract
Repeated grouping/repeated addition (does not have to be restricted to cubes) 3×4 or 3 lots of 4	Children to represent the practical resources in a picture e.g. $\begin{array}{lll} x x & x x & x x \\ x x & x x & x x \end{array}$ Use of a bar model for a more structured method	$\begin{aligned} & 3 \times 4 \\ & 4+4+4 \end{aligned}$
Use number lines to show repeated groups- 3×4	Represent this pictorially alongside a number line e.g:	Abstract number line $3 \times 4=12$
Use arrays to illustrate commutativity (counters and other objects can also be used) $2 \times 5=5 \times 2$	Children to draw the arrays	Children to be able to use an array to write a range of calculations e.g. $\begin{aligned} & 2 \times 5=10 \\ & 5 \times 2=10 \\ & 2+2+2+2+2=10 \\ & 5+5=10 \end{aligned}$

Fluency variation, different ways to ask children to solve 6×23 :

Division-

Key language which should be used: share, group, divide, divided by, half, 'is equal to' 'is the same as'

Concrete	Pictorial	Abstract
6 shared between 2 (other concrete objects can also be used e.g. children and hoops, teddy bears, cakes and plates)	This can also be done in a bar so all 4 operations have a similar structure:	$6 \div 2=3$ What's the calculation?
Understand division as repeated grouping and subtracting $6 \div 2$		Abstract number line
2d $\div 1 \mathrm{~d}$ with remainders $13 \div 4$ - 3 remainder 1	Children to have chance to represent the resources they use in a pictorial way e.g. see below:	$13 \div 4$ - 3 remainder 1 Children to count their times tables facts in their heads

Long division

Concrete	Pictorial	Abstract
	Children to represent the counters, pictorially and record the subtractions beneath.	$1 2 \longdiv { 2 } \quad \begin{array} { l } { \text { Step one- exchange } 2 } \\ { \text { thousand for } 2 0 \text { hundreds } } \\ { \text { so we now have } 2 5 } \\ { \text { hundreds. } } \end{array}$
Exchange 2 thousand for 20 hundreds.		Step two- How many groups of 12 can I make with 25 hundreds? The 24 shows the hundreds we have grouped. The one is how many hundreds we have left
		$1 2 \longdiv { 2 5 4 4 }$ Exchange the one hundred for 10 tens. How many
We have grouped 24 hundreds so can take them off and we are left with one.		groups of 12 can I make with 14 tens? The 14 shows how many tens
Exchange the one hundred for ten tens so now we have 14		I have, the 12 is how many I grouped and the 2 is how many tens I have left.
tens. How many groups of 12 are in 14? 1 remainder 2.		$12 \begin{gathered}2544 \\ 24\end{gathered}$ Exchange the 2 tens for 20
Exchange the two tens for twenty ones so now we have 24 ones. How many groups of 12 are in 24? 2		14 12 24 24 0 what I have left.

